
A QUERY-ORIENTED APPROACH TO

CORPUS ANALYSIS WITH SQL AND

MODERN RELATIONAL DATABASE

MANAGEMENT SYSTEMS

A Thesis

Presented to

The Honors Tutorial College

Ohio University

In Partial Fulfillment

of the Requirements for Graduation

from the Honors Tutorial College

with the degree of

Bachelor of Science in Computer Science

by

Nathaniel Ekoniak

June 2006

1

ABSTRACT

This paper explores the applications of relational database management sys-

tems to some common tasks in Corpus Linguistics, including various statistical

analyses, concordances, collocations and searching. Simple table design for corpora

is discussed and techniques for examining corpus data and statistics are presented

using the SUSANNE corpus (an annotated subset of the Brown corpus). Programmer

efficiency in the relational database approach are compared with traditional iterative

programming techniques, and the advantages and disadvantages of the relational

approach are analyzed.

2

Table of Contents
...1. Introduction 4

...2. Background 5

...3. Related Work 8

...4. The Database 9

...5. The Data 10

...5.1 The SUSANNE Corpus 10

..5.2 Table Design 11

...5.3 Importing 12

..5.4 Annotations 14

...5.5 JOIN 15

..6. Corpus Analysis 16

...6.1 Aggregate Statistics 16

...6.2 Word Lists 18

..6.3 Frequency 19

..6.4 N-grams and Collocations 22

...6.5 Thresholds 26

...6.6 Concordances with 5-grams 26

...7. Conclusions 28

..7.1 Disadvantages 28

...7.2 Advantages 28

...7.3 Summary 29

...Works Cited 31

3

1. Introduction
A common complaint in the field of Computer Science is that programmers,

engineers and researchers are constantly “reinventing the wheel”—wasting countless

hours writing programs to do things that have already been done. Recently, the

prevalence of so-called “scripting” languages—Perl, Python, and others—has allevi-

ated some of the burden with task-oriented modules, powerful built-in data struc-

tures and high-level interfaces which remove the programmer from many of the

nitty-gritty details often associated with programming. However, for non-

programmers, the theory and implementation of even relatively simple programs can

be a daunting task requiring intimate knowledge of algorithms and data structures.

Additionally, the use of these languages is not, in and of itself, truly a move away

from redundancy; it reduces the time spent in development and debugging, but in

the end we have merely streamlined the wheel-invention process. Unfortunately, for

all but the most common and pedestrian of tasks there is often no easy solution.

For some types of tasks, however, there is an oftentimes-overlooked solution:

modern relational database management systems. Relational databases offer a con-

sistent interface to data and stores it in a regular fashion. Consequently, the user of a

relational database does not need to be concerned with the actual data structures in

which the data is stored or the algorithms used to access or update them or optimize

these operations—these are all taken care of by the RDBMS itself. Whereas scripting

languages still, at their root, use the same traditional style of iterative programming,

relational databases offer SQL, a standard language for relational data access and

4

manipulation, which emphasizes the relational model and data abstraction. This pa-

per investigates the advantages and disadvantages of the relational model and using

relational database management systems to accomplish tasks in the analysis of anno-

tated corpora.

This paper offers to those faced with this problem of gathering data from cor-

pora a basic model for the creation and use of relational database management sys-

tems with an annotated corpus. Although the use of relational databases has been

occasionally investigated, implemented successfully and documented (Davies Advan-

tages), the relational model has been considered as something that must be worked

around and thought of as ill-suited for storing strings of text (Lawler and Dry). The

approach in this paper, however, embraces the relational model for the storage of se-

quential textual data; as a result, the user can take the maximum advantage of rela-

tional database technologies for the abstraction of data, efficient access and the pow-

erful built-in functionality of modern relational database management systems.

2. Background
Corpus linguistics, a sub-field of linguistics, is an expanding discipline which

merges empirical data—corpora—with linguistic theory. Observations gathered from

this data are used for many purposes, like probabilistic modeling, machine transla-

tion, static and dynamic description of stylistic language, and improving the devel-

opment of accurate, real-world linguistic models (Kennedy 8-9). Analysis of corpora

generally involves the annotation, (be it manual, computer-assisted or automatic) of

5

text with relevant linguistic information (e.g., part-of-speech tagging or lemmatiza-

tion) and subsequent statistical analyses on the annotated text (McEnery and Wilson

32-53). Researchers have at their disposal many different kinds of tools for this analy-

sis, but they fall mainly into three categories: commercial tools which may be expen-

sive and are often, by their nature, closed to modification, open-source tools which

are freely available but frequently lacking in depth of features, and custom tools cre-

ated by individual linguists themselves (Hammond 2).

While the ability to create custom programs is a useful, even necessary skill

for language researchers wishing to leverage the ability of computers to automate

tasks such as annotation and analysis of large bodies of data, it is unreasonable to ex-

pect all excellent researchers to also be excellent programmers. Unfortunately, the

exploratory nature of research can often require tools which are not readily available

to researchers. While this is not a problem for researchers positioned within large

companies with in-house programmers and deep pockets, it can be a prohibitive ob-

stacle to many others. As such, linguists are forced to become programmers and

software architects, taking crash courses in introductory programming just so they

can get the data that they need to continue their work (Mason 4). Tellingly, there are a

number of books available(Hammond, Mason) which attempt to give linguistic re-

searchers a “crash course” in programming. The knowledge and skill needed for

most tasks, however, is beyond the scope of an introductory book; computer pro-

grammers study for several years to learn them.

6

The skills required to create good software are themselves numerous and var-

ied, spread across their own fields like Software Engineering and Computer Science.

Those coming from other fields may not be familiar with the breadth of tools avail-

able, the possibilities and limitations of those various tools, and the most efficient

way to use these tools to accomplish a task. Linguistic researchers without a com-

puter programming background are fundamentally limited by this lack; program-

ming can be, even for students and professionals in the field, a laborious and difficult

task.

This kind of cross-discipline effort also rarely results in efficient (or even func-

tional) coding. A common problem with any kind of data parsing is what may be

termed the “shampoo-bottle method”: parse, process, repeat. For every question, a

new program must be written or adapted from an old one, and that program must

read in the data, parse it into its internal data structures, and process the data for the

information it is looking for. When the program is finished, it outputs the results and

exits. If the researcher wants to ask another question, no matter how slightly it differs

from the one just answered, the whole process must begin again. Larger, more com-

plicated programs may avoid this by keeping the data in memory and allowing the

researcher to adjust queries and even see results in real time, but the resources re-

quired to design such a program can be staggering—perhaps requiring a team of ex-

perienced programmers several years. When the question is not something that can

be readily answered by existing tools, or those tools are not available due to lack of

funding or restrictive licensing or for other reasons, however, the only recourse may

7

be to create or adapt a single-purpose program to accomplish the task. Even this ad-

aptation, while it may reduce the time needed to program a solution, can result in

wasted time and effort when an inexperienced programmer does not understand the

original code, or does not consider a more efficient or correct solution because it

would require starting over.

This is where modern relational database management systems come in to

play. With powerful relational database management systems freely available for

download, researchers can leverage their power to improve their ability to perform

linguistic research with large corpora. The algorithms needed for data manipulation

and access such as searching, sorting, storing, retrieving, displaying and more, have

already been implemented, optimized and given a standard interface. Although the

use of relational databases for storing corpora has been investigated (Nerbonne 2),

the potential of the RDBMS to enhance the efficiency, flexibility and simplicity of cer-

tain corpus research has not been investigated in depth.

3. Related Work
Mark Davies, Professor of Corpus Linguistics at Brigham Young University,

has created several searchable online corpora using relational database technology,

most notably the Corpus del Español1, using Microsoft SQL Server (Davies N-gram).

However, the format for the storage of corpus data I implement in this paper is

somewhat different from his approach. The actual text of the Corpus del Español is

8

1 Accessible online at «www.corpusdelespanol.org»

not stored in the same way as the annotation data; rather it is stored in a “1000-2000

word chunks of text…not annotated in any way, apart from a code that indicates the

source of each block of text.”(23) Not only does does this not conform to the rela-

tional model, but for corpora in languages with a high degree of polysemy it becomes

difficult to disambiguate word senses. However, the “vertical” format (Advantage

318) that is implemented and used in this paper allows us to store the corpus text on

the same level as the annotation. By storing each token in its own row, there are a

number of benefits which would are not available in the format Davies uses, such as

per-token annotation and finer-grained searching. Furthermore, Davies imports n-

gram data from an external program, WordSmith, with frequency data grouped by

the century of the source material (319). Since the database does not contain a fine-

grained copy of the original text, frequency information cannot be obtained for cate-

gories more specific than those imported originally. Using the techniques described

in this paper, however, additional frequency information can be obtained using SQL

queries directly inside of the database application at any time using arbitrary annota-

tion categories.

4. The Database
The relational database management system used for this research is Post-

greSQL 8.1, available at «http://www.postgresql.org/». As the aim of this paper is to

show how this method can be used by any researcher regardless of their program-

ming background or available resources, an Open Source database which can be

9

freely downloaded and will run on most modern architectures was chosen. In addi-

tion to meeting these requirements, PostgreSQL can be used freely for any purpose,

being released under the BSD license; this means that derivative works can be freely

redistributed, including for use in commercial products, without restriction.2 This

paper does not cover installation and setup of PostgreSQL. However, setup instruc-

tions can be found at the PostgreSQL website, and for many common operating sys-

tems there are programs to accomplish the steps necessary to install it automatically.

Other RDBMSes such as MySQL, MS SQL, ORACLE, SQLite and others could also be

used. All interaction with the database is done using the bundled PostgreSQL client

psql. Clients with graphical interfaces, such as phpPgAdmin3, are also available

freely available.

5. The Data

5.1 The SUSANNE Corpus
In order to provide any useful examples, a reasonably-sized corpus with at

least one level of annotation was necessary. I have also chosen a freely available

tagged corpus, the SUSANNE4 corpus. The SUSANNE corpus is a subset of the

Brown corpus, a well-known megaword corpus of American English. The SUSANNE

corpus consists of about 130,000 words, lemmatized and tagged for part of speech

10

2 see http://www.postgresql.org/about/licence

3 http://phppgadmin.sourceforge.net/

4 SUSANNE stands for “Surface and underlying structural analyses of naturalistic Eng-
lish” (Sampson)

http://www.postgresql.org/about/licence%06
http://www.postgresql.org/about/licence%06

and structure. This corpus, along with several other related corpora, are available at

«http://www.grsampson.net/Resources.html» (Sampson). Although the SUSANNE

corpus is tagged with extensive information including tree structure, it is beyond the

scope of this paper to investigate the use of all fields. Rather, this paper focuses on

demonstrating how to accomplish several useful types of tasks with the data avail-

able.

5.2 Table Design
The basis of the all relational databases is, unsurprisingly, relations, more

commonly known as tables. Data is organized into columns and rows, with each col-

umn representing the type of data and each row representing a record. Relational

database management systems are tools for storing, managing, accessing and ma-

nipulating the data in these tables (PostgreSQL 6). Using the SQL query language,

one can perform a wide array of functions.

Figure 1 shows a small excerpt of data from the SUSANNE corpus, as distrib-

uted. As a text file, this information is difficult to process without a solid knowledge

of programming and text processing; as a table in a relational database, however,

many complex tasks can be carried out almost immediately using SQL, skipping

quite a few steps that would be necessary before even getting started when gathering

data using a language like Perl or Java. For most of the data in this project, however,

11

A01:0030.06- NN2 irregularities irregularity .Np:s]
A01:0030.09- VVDv took take [Vd.Vd]

Figure 1. An excerpt from the SUSANNE corpus, as distributed.

there is a very simple 1-to-1 relationship between each field and its associated index.

The main database table has the same structure as the distributed corpus data (figure

2). Figure 3 shows how additional data may not have the same 1-to-1 relationship,

and should be stored in a separate table, linked to the main table by the unique pair

of file and index.

5.3 Importing
Unfortunately, there is no magic

bullet for converting data from one format

into another; the task can be trivially sim-

ple or extremely difficult depending on the

type of data and the difference between the

original and target formats. Fortunately this step need only be done once; after the

data has been imported into relational tables, it need not be parsed again, and can

even be exported and distributed in a database-independent manner. When writing

single-purpose programs, this step must be repeated every time the program is run

and every time another program is written.

12

260483021A01

130151006A01

Sentence
integer

Stop
integer

Start
integer

File

text

Figure 3
A theoretical “sentence” table defining an
additional level of annotation to the corpus.

[Vd.Vd]taketookVVDv—3009A01

.Np:s]irregularityirregularitiesNN2—3006A01

Parse
text

Lemma
text

Token
text

Tag
text

Status
char(1)

Index
integer

File
text

Figure 2
An excerpt from the SUSANNE corpus represented in a single database table.

In this case, the source and target for-

mats are quite similar, and PostgreSQL, along

with most other databases, has import func-

tionality for regular, delimited data distributed

as one-record-per-line text files In fact, with

PostgreSQL’s COPY functionality, the tab-delimited

SUSANNE files could be imported directly into a

suitable database table exactly as distributed. How-

ever, since it is somewhat useful to split the first field,

originally a concatenation of the filename, some mi-

nor reformatting was done on the original text to re-

place the 4th character (always

‘:’) with a tab (‘\t’) and to re-

place the line number with

successive integers (it will be made clear later why this is useful). In this case was

done using a small perl script (see figure 4) which only needed to be created and run

a single time.

Table creation is fairly straightforward. Figure 5 shows the usage of the

CREATE TABLE command along to create the main database table corresponding to

the structure of SUSANNE corpus files seen in figures 1 and 2. Since the newly-

created table and the data files have the same fields in the same order, PostgreSQL

13

susanne=# \copy main FROM A01.tab DELIMITER '\t'

Figure 6. Data import with \copy.

CREATE TABLE main (
 file text,
 index integer,
 status char(1),
 tag text,
 token text,
 lemma text,
 parse text
);

Figure 5. Main table creation.

while (<>)
{
 s/^(...):.{7}/$1\t$line/;
 print;
 $line++;
}

Figure 4. Basic PERL script for refor-
matting the SUSANNE corpus files.

COPY or psql’s \copy5 functionality is capable of importing the data from the text files

(figure 6).

5.4 Annotations
Additional annotation can be added to the

corpus in the form of additional database tables

which reference the original table by certain col-

umns. Included with the SUSANNE corpus, for ex-

ample, is source data for each of the source texts

14

5 PostgreSQL COPY requires database superuser permissions. The psql client’s \copy uses the
same syntax but requires no special permissions (PostgreSQL 1041).

susanne=# INSERT INTO sources VALUES ('G01', 'Northern Liberals and Southern
Bourbons','Edward P. Lawton','The Georgia Review','1961');
INSERT 0 1
susanne=# INSERT INTO sources VALUES ('G02', 'Toward a Concept of National
Responsibility','Arthur S. Miller','The Yale Review','1961');
INSERT 0 1

Figure 10. Inserting data into the source annotation table.

G01 Edward P. Lawton, "Northern Liberals and Southern Bourbons", The Georgia Re-
view, 15 (1961), 254-259
G02 Arthur S. Miller, "Toward a Concept of National Responsibility", The Yale Re-
view, LI:2 (December 1961), 186-191

Figure 8. Source: The SUSANNE Corpus: Documentation.
Excerpt from source listing.

The Yale ReviewArthur S. MillerToward a Concept of National...G02 1961

The Georgia ReviewEdward P. LawtonNorthern Liberals and Southern...G01 1961

Source
text

Author
text

Title
text

File

text

Year
date

Figure 9. A table describing source attributes. Data is truncated here for display only.

CREATE TABLE sources (
 file text,
 title text,
 author text,
 source text,
 year integer
);

Figure 7. Source table creation.

(figure 8). Note that instead of the

typical one-to-one relationship with

each row in the main table, this ta-

ble has one row for each original file

(figure 9). Completely new data can

be entered using INSERT state-

ments (figure 10).

To look at the data, use the

SELECT command. SELECT, followed by a list of columns, functions, or * for all col-

umns, followed by FROM and the name of a table, will display the data in that table.

When just looking at a table for an example it may be useful to place a LIMIT clause

at the end of your query; e.g., SELECT tag, token, lemma FROM main LIMIT 5;

will return only the tag, token and lemma columns for the first 5 rows (figure 11). It is

worth noting that the order of rows in a table is never guaranteed and should not be

considered important unless explicitly sorted by an ORDER BY clause (see section 6.2).

5.5 JOIN
The most important feature of the

relational database is the JOIN. Al-

though there are several types of

joins, for simplicity’s sake this pa-

per. first discusses only NATURAL

JOIN, which allows two (or more)

15

susanne=# SELECT token, author FROM
main NATURAL JOIN sources LIMIT 5;
 token | author
----------+------------------
 <minbrk> | Edward P. Lawton
 NORTHERN | Edward P. Lawton
 liberals | Edward P. Lawton
 are | Edward P. Lawton
 the | Edward P. Lawton
(5 rows)

Figure 12. Using NATURAL JOIN to combine the
annotation table to the main table.

susanne=# SELECT tag, token, lemma
FROM main LIMIT 5;
 tag | token | lemma
--------+----------+--------
 YB | <minbrk> | -
 AT | The | the
 NP1s | Fulton | Fulton
 NNL1cb | County | county
 JJ | Grand | grand
(5 rows)

Figure 11. Using SELECT … FROM … LIMIT to
retrieve a few rows from the database.

tables to be linked based on columns that have the same name. To link the original

table, main, with the new annotations, the FROM clause must be, instead of one table

name, a table name followed by NATURAL JOIN followed by a second table name (see

figure 12). This allows us to see what annotations are associated with each line from

the corpus. When joining tables, rows which are not linked to a corresponding row in

another table will not appear by default. This is because by default all joins are INNER

JOINs. For information on other types of JOINs that see the PostgreSQL Documenta-

tion, available at «http://www.postgresql.org/docs/».

6. Corpus Analysis

6.1 Aggregate Statistics
Some of the simplest tasks

involve retrieving a single piece of

information about the corpus from

the database—for example, the

number of words total. By using

some of PostgreSQL’s aggregate

functions—functions that combine

data from multiple rows, various

statistics about the data in the cor-

pus can be obtained. The function

count(), for example, counts the

16

susanne=# SELECT count(DISTINCT to-
ken) FROM main;
 count

 17345
(1 row)

Figure 14. Using the aggregate function count() to
obtain a count of unique tokens in the table.

susanne=# SELECT count(*) FROM main;
 count

 156622
(1 row)

Figure 13. Using the aggregate function count() to
obtain a count of the number of words in the table.

number of rows returned by a

query. count() can take several

arguments; the most common is *,

which counts all rows, as seen in

figure 13. It can also be given a spe-

cific column name, in which case it will count the number of rows in which that col-

umn’s value is not NULL6. Finally, DISTINCT column will count the unique values in

that column, as in figure 14. Functions can also be combined for even more powerful

queries: char_length() returns the number of characters in a string, and the aggre-

gate function avg() returns the average value of a set of rows. To get the average

length of tokens in the main database table, simply use SELECT

avg(char_length(token)) FROM

main; as shown in figure 15.

The WHERE clause narrows

down the rows returned to a spe-

cific subset of rows which cause the

given expression to evaluate to true. The WHERE clause takes any expression returning

true or false, which can be composed of multiple expressions joined together by AND

and OR. Expressions can be negated with NOT. To get a count of only rows which

have the token “Friday”, for example, simply attach WHERE token = ‘Friday’ to the

17

6 NULL indicates the non-existence of a value. Due to how SUSANNE corpus data was im-
ported, there are no NULL rows in the database.

susanne=# SELECT avg(char_length(to-
ken)) FROM main;
 avg

 4.5747276883196486
(1 row)

Figure 15. Combining aggregate and non-aggregate
functions to find the average token length.

susanne=# SELECT count(*) FROM main
WHERE token = 'Friday';
 count

 13
(1 row)

Figure 16. Using WHERE to narrow down results.

original query using count(), as seen

in figure 16.

6.2 Word Lists
Included in the 5th release of

the SUSANNE corpus is a file, lexi-

con, which contains “an alphabetized

list of all pairs of wordform and word-

tag that occur at least once in the Cor-

pus” (Sampson). While it is conven-

ient to be provided with such a list, it

is also obvious that the data necessary to create it is already in the database.

Unfortunately, creating a program to accomplish even this simple task is non-

trivial for a non-programmer in a language such as Perl or Java. A high-level descrip-

tion of such a program might look something like figure 17, with many of the indi-

vidual steps shown representing extremely difficult programming problems in and of

themselves. Considerations include how to extract the data from the file, how to store

data in memory, how to sort and display the data, and myriad other minutiae. Find-

ing unique items in a list is a common enough task, but there may be no ready-made

functionality, that can operate, for example, on pairs of items, or triplets. Even in

Perl, where there are many, many pre-made modules available to download, if a func-

tion does not accept and return data in the formats needed, there is the additional

overhead of reformatting data. If an algorithm does not provide exactly what is

18

Read a

line

Extract Data
Compare to

previous data

Previously Seen?

StoreDiscard

YES NO

More Input?YES

Sort

NO

OutputStart

Figure 17.
A flowchart description of an iterative program
for listing unique items read in from a file.

needed, a new one must be created or another adapted, which can still require in-

depth programming knowledge. With a corpus in a relational database, however,

data input and storage are already done, and output is handled by the client. The

fully standardized and generic structure of relational database tables allows for a

wide array of data manipulations which can be done with incredibly flexibility and

efficiency, without traditional iterative coding.

The same task, done in our database, is astoundingly simple: using SELECT,

the GROUP BY clause which allows us to merge rows with duplicate fields, and the

ORDER BY clause which allows us to sort rows based on a certain column, the same

information that is in lexicon can be retrieved with the SQL query seen in figure 18.

6.3 Frequency
Some of the advantages of relational databases and RDBMSes such as Post-

gres has already become apparent in even the simple task of creating a list of words..

A common and related task is frequency counting. Though there is no lack of soft-

ware to find word frequencies in a textfile, a relational database has a few advantages

19

 susanne=# SELECT token, tag FROM main GROUP
 BY token, tag ORDER BY token ASC;
lexicon token | tag
-------- -------------------+--------
% NNUp22 % | NNUp22
& CC & | CC
& NP1j32 & | NP1j32
(YPL (| YPL
(1) MCb (1) | MCb
(1,1) FOx (1,1) | FOx

Figure 18. A partial side-by-side comparison of the lexicon file and the output of the SQL query.

with respect to constraining results.

When using GROUP BY, aggregate

functions, instead of working on all

the rows in the table, compute val-

ues on all the merged rows for each

row returned. In order to get a fre-

quency list of all the unique pair-

ings of token and tags, simply add

the count(*) aggregate function to the list of columns to return for the word list from

section 5.1, as seen in figure 19. It is rather trivial to extend this to include a percent

count of words in the corpus as a whole, but another concept is needed: subqueries.

20

susanne=# SELECT token, tag, count(*), 100. * count(*) / (SELECT
count(*) FROM main) as proportion FROM main GROUP BY token, tag OR-
DER BY count DESC LIMIT 10;
 token | tag | count | proportion
----------+-----+-------+--------------------
 the | AT | 8488 | 5.4194174509328191
 +, | YC | 6877 | 4.3908263206956877
 +. | YF | 6584 | 4.2037517079337513
 of | IO | 4433 | 2.8303814278964641
 and | CC | 3253 | 2.0769751375924200
 - | YG | 3068 | 1.9588563547905147
 a | AT1 | 2776 | 1.7724202219356157
 in | II | 2404 | 1.5349056965177306
 <minbrk> | YB | 1897 | 1.2111963836498065
 to | TO | 1763 | 1.1256400761068049

Figure 20. The 10 most common word+tag pairs in the corpus, with their associated count and the
proportion of the corpus they represent.

susanne=# SELECT token, tag, count(*)
FROM main GROUP BY token, tag ORDER
BY count DESC LIMIT 5;
 token | tag | count
----------+-----+-------
 the | AT | 8488
 +, | YC | 6877
 +. | YF | 6584
 of | IO | 4433
 and | CC | 3253

Figure 19. The aggregate function count() allows us to
count the number of rows in each grouping.

The formula 100. * count / to-

tal7 will find the percent of all

words in the corpus for each

token+tag combination. The total

(the count of words in the corpus as

a whole) is necessary for the calcula-

tion, but because of the GROUP BY

clause the aggregate function count() operates on each grouping of rows. One way,

of course, would be to issue two separate queries: one to find the total word count,

and then a second to find the proportion of each word to the total, with the total en-

21

7 Note the period after 100—PostgreSQL, like most computer programs, uses integer division
for dividing two integers. By forcing 100 to be a floating point number, the percent column is
calculated correctly using floating point math.

susanne=# CREATE TABLE threegrams AS SELECT twograms.*,index AS
three, tag AS tag3, token as token3, lemma AS lemma3 FROM twograms
JOIN main USING (file) WHERE index = two + 1;

susanne=# CREATE TABLE fourgrams AS SELECT threegrams.*,index AS
four, tag AS tag4, token as token4, lemma AS lemma4 FROM threegrams
JOIN main USING (file) WHERE index = three + 1;

Figure 22b. Using self joins to generate 3-gram and 4-gram tables.

susanne=# SELECT token AS word, tag
AS part_of_speech, 5 * 10 AS fifty
FROM main;
 word | part_of_speech | fifty
----------+----------------+-------
 <minbrk> | YB | 50
 The | AT | 50
 Fulton | NP1s | 50
 County | NNL1cb | 50
 Grand | JJ | 50

Figure 21. Renaming columns.

susanne=# CREATE TABLE twograms AS SELECT one.file, one.index AS
one, one.tag AS tag1, one.token AS token1, one.lemma AS lemma1,
two.index AS two, two.tag AS tag2, two.token AS token2, two.lemma AS
lemma2 FROM main AS one JOIN main AS two USING (file) WHERE
two.index = one.index + 1;

Figure 22a. Using self joins to generate a 2-gram table.

tered by hand from the previous query.

However, if the original count() query

is surrounded in parentheses to indicate

that it is a subquery, this information

can be retrieved all in one query, as seen

in figure 20. Note that PostgreSQL the

new column has been renamed pro-

portion. A new column name can be

specified for any column by following

the column specification with AS

new_name, as shown in figure 21.

6.4 N-grams and Collocations
Mark Davies, in Relational

n-gram databases as a basis for un-

limited annotation on large corpora,

proposes the annotation of tex-

tual databases with n-gram ta-

bles for fast and powerful

searches. For the Corpus del Es-

pañol, Davies uses the Word-

Smith program to generate n-

gram tables for importation into

22

susanne=# SELECT tag1, tag2, count(*)
FROM twograms GROUP BY tag1, tag2 ORDER
BY count DESC LIMIT 10;
 tag1 | tag2 | count
------+------+-------
 II | AT | 2325
 AT | NN1c | 2199
 YF | YB | 1815
 JJ | NN1n | 1708
 AT | NN1n | 1656
 AT | JJ | 1644
 JJ | NN2 | 1523
 IO | AT | 1337
 JJ | NN1c | 1249
 NN1n | IO | 1223
(10 rows)

Figure 23b. Finding the 10 most common tag bigrams.

susanne=# SELECT token1, token2,
count(*) FROM twograms GROUP BY
token1, token2 ORDER BY count DESC
LIMIT 10;
 token1 | token2 | count
----------+----------+-------
 +. | <minbrk> | 1708
 of | the | 1395
 in | the | 774
 +, | and | 658
 - | to | 611
 +. | The | 593
 +, | the | 509
 +<rdquo> | +. | 471
 to | the | 437
 +. | He | 364
(10 rows)

Figure 23a. Finding the 10 most frequent 2-grams.

23

susanne=# SELECT token1, token2, token3, count(*) FROM threegrams
WHERE token2 LIKE 'and' AND tag1 NOT LIKE 'Y%' AND tag2 NOT LIKE
'Y%' AND tag3 NOT LIKE 'Y%' GROUP BY token1, token2, token3 ORDER
BY count DESC LIMIT 5;
 token1 | token2 | token3 | count
---------------+--------+--------------+-------
 <formul> | and | <formul> | 19
 1 | and | 2 | 5
 medical | and | dental | 4
 physiological | and | pathological | 4
 more | and | more | 4

Figure 23d. The 5 most frequent 3-grams consisting of two non-punctuation tokens joined by ‘and’.

susanne=# SELECT token1, token2, tag1, tag2, count(*) FROM
twograms WHERE tag1 = 'JJ' AND tag2 LIKE 'N%' GROUP BY
token1, token2, tag1, tag2 ORDER BY count DESC LIMIT 5;
 token1 | token2 | tag1 | tag2 | count
--------------+----------+------+-------+-------
 United | States | JJ | NN2 | 52
 New | York | JJ | NP1t | 24
 bronchial | artery | JJ | NN1c | 20
 pulmonary | artery | JJ | NN1c | 16
 New | England | JJ | NP1c | 15

Figure 23e. The 5 most frequent 2-grams consisting of an adjective followed by a noun.

susanne=# SELECT token1, token2, token3, token4, count(*)
FROM fourgrams WHERE tag1 NOT LIKE 'Y%' AND tag2 NOT LIKE
'Y%' AND tag3 NOT LIKE 'Y%' AND tag4 NOT LIKE 'Y%' GROUP BY
token1, token2, token3, token4 ORDER BY count DESC LIMIT 5;
 token1 | token2 | token3 | token4 | count
----------+----------+----------+--------+-------
 of | the | United | States | 9
 the | radio | emission | of | 9
 that | the | United | States | 8
 for | the | first | time | 8
 the | end | of | the | 8

Figure 23c. The 10 most frequent 4-grams, without punctuation (tags starting with Y).

the database (Davies Advantages 319). However once again this information is al-

ready in the database itself. By joining the main table to itself, a list of all n-grams,

unique n-grams with frequency information, or other types of annotation can be gen-

erated. The SQL query in figure 22a will generate every 2-gram in the database, with

associated annotations and unique column names. Although it is arguably most cor-

rect to generate this table anew for each

query, since the underlying database does

not change this information can be inserted

into a new table by prefixing a SELECT

query with CREATE TABLE ... AS, turning

the result of the query into its own table.

This table is also useful for generating 3-

grams, 4-grams, etc. by joining it with the

main table only once each additional time,

which offers the additional advantage of

being no slower to create each additional

level than it was to create the previous. (fig-

ure 22b). The technique discussed in section

5.3 to retrieve frequency information can be

used for n-grams, too, as seen in figures 23a

and 23b. Text comparison operators such as

24

susanne=# SELECT token, tag,
count(*) FROM main GROUP BY
token, tag HAVING count(*) >
1000 ORDER BY count DESC;
 token | tag | count
----------+------+-------
 the | AT | 8488
 +, | YC | 6877
 +. | YF | 6584
 of | IO | 4433
 and | CC | 3253
 - | YG | 3068
 a | AT1 | 2776
 in | II | 2404
 <minbrk> | YB | 1897
 to | TO | 1763
 to | IIt | 1261
 was | VBDZ | 1225
 is | VBZ | 1222
 <ldquo> | YIL | 1157
 +<rdquo> | YIR | 1148
 that | CST | 1069
 The | AT | 1035
 for | IF | 1014
(18 rows)

Figure 24a. Using HAVING to narrow down
results based on aggregated count.

LIKE and SIMILAR TO8 can narrow down search results for certain tags, tokens or

lemmas (figures 23c, 23d, 23e).

25

8 LIKE allows basic wildcard matching with ‘%’ to indicate 0 or more unknown characters and
‘_’ to indicate a single unknown character. SIMILAR TO allows for full POSIX regular ex-
pression support (PostgreSQL 144-146)

susanne=# SELECT token, tag, count(*), 100. * count(*) /
(SELECT count(*) FROM main) AS percent FROM main GROUP BY
token, tag HAVING 100. * count(*) / (SELECT count(*) FROM
main) > .5 ORDER BY count DESC;
 token | tag | count | percent
-----------+--------+-------+------------------------
 the | AT | 8488 | 5.4194174509328191
 +, | YC | 6877 | 4.3908263206956877
 +. | YF | 6584 | 4.2037517079337513
 of | IO | 4433 | 2.8303814278964641
 and | CC | 3253 | 2.0769751375924200
 - | YG | 3068 | 1.9588563547905147
 a | AT1 | 2776 | 1.7724202219356157
 in | II | 2404 | 1.5349056965177306
 <minbrk> | YB | 1897 | 1.2111963836498065
 to | TO | 1763 | 1.1256400761068049
 to | IIt | 1261 | 0.80512316277406750010
 was | VBDZ | 1225 | 0.78213788612072378082
 is | VBZ | 1222 | 0.78022244639961180422
 <ldquo> | YIL | 1157 | 0.73872125244218564442
 +<rdquo> | YIR | 1148 | 0.73297493327884971460
 that | CST | 1069 | 0.68253502062290099731
 The | AT | 1035 | 0.66082670378363192910
 for | IF | 1014 | 0.64741862573584809286
 +<hyphen> | YH | 937 | 0.59825567289397402664
 he | PPHS1m | 884 | 0.56441623782099577326
 with | IW | 818 | 0.52227656395653228793
 it | PPH1 | 805 | 0.51397632516504705597
 his | APPGm | 804 | 0.51333784525800973043
 be | VB0 | 788 | 0.50312216674541252187
(24 rows)

Figure 24b. Using HAVING to narrow down results based on percentage of the corpus.

6.5 Thresholds
So far limiting the returned rows to only the top results has been done using

ORDER BY and LIMIT. It is tempting to use WHERE to attempt to limit the results of a

frequency analysis to entries with, say, more than 1000 occurrences, or entries that

comprise more than .5% of the corpus. Since these use data from aggregate functions

calculated on grouped rows, the WHERE clause cannot be used in the main query itself

and instead HAVING must be used (PostgreSQL 82). Applying HAVING to the original

word frequency count (section 5.3) can limit the results to more than 1000 occurrences

(figure 24a). The proportional analysis from figure 19 can be limited to words com-

prising more than than .5% of the corpus by using HAVING and the > (greater than)

operator (figure 24b).

6.6 Concordances with 5-grams
Another common task is concordances, or listings of words in context. Creat-

ing traditional concordances with a certain number of characters of context is not a

task well-suited to relational databases (though it is not difficult, there are no advan-

26

susanne=# SELECT file, three AS index, token1, token2, token3 AS
center, token4, token5 FROM fivegrams WHERE token3 LIKE 'fly';
 file | index | token1 | token2 | center | token4 | token5
------+-------+--------+-----------+--------+---------+----------
 N15 | 31 | - | could | fly | was | sent
 G11 | 261 | +; | we | fly | through | the
 A13 | 804 | of | pop | fly | hits | <mdash>
 A13 | 823 | a | sacrifice | fly | +. | <minbrk>
 G04 | 1756 | +. | A | fly | would | crawl
 G03 | 2313 | - | to | fly | without | specific
(6 rows)

Figure 25a. Using 5-grams to view concordances for a literal token ‘fly’.

tages offered by the relational model which would make it significantly better than

other methods), but with n-gram tables (or a number of joins) it is trivial to generate

concordances with a certain number of tokens on each side by simply searching the

middle field of an n-gram table. Likely the minimally useful amount of context

would be two words on each side, requiring a 5-gram table. However, more context

can be added with additional joins; joining a 5-gram table to itself can give four

words of context on each side, and with an arbitrary amount of joins one can have an

arbitrary amount of context). Example concordances using 5-gram tables can be seen

in figures 25a and 25b.

27

susanne=# SELECT file, three AS index, token1, token2, token3 AS
center, token4, token5 FROM fivegrams WHERE lemma3 LIKE 'fly' AND
tag3 LIKE 'V%';
 file | index | token1 | token2 | center | token4 | token5
------+-------+----------+------------+--------+---------+----------
 N15 | 31 | - | could | fly | was | sent
 N15 | 62 | the | enemy | flew | or | floated
 N04 | 184 | They | all | flew | into | action
 G11 | 261 | +; | we | fly | through | the
 N15 | 705 | and | instrument | flying | +, | and
 A11 | 1101 | +<rdquo> | +, | flew | here | late
 N04 | 1512 | young | warrior | flew | over | its
 A09 | 1943 | <bmajhd> | HOOD | FLIES | OVER | HOUSE
 A09 | 1955 | the | car | flying | over | the
 N15 | 2273 | the | enemy | flew | into | them
 N15 | 2309 | +<apos>s | propeller | flew | off | in
 G03 | 2313 | - | to | fly | without | specific
 N14 | 2487 | loose | dirt | flying | behind | him
 N05 | 2517 | +tailed | hawk | flew | in | behind
(14 rows)

Figure 25b. Using 5-grams to view concordances for all instances of ‘fly’ as a verb using lemma and
POS annotation.

7. Conclusions

7.1 Disadvantages
Unfortunately, some tasks and types of annotation are unsuited for relational

databases. Some tasks are by nature better suited to iterative programming tech-

niques which, while they can be implemented and linked to the database using Post-

greSQL’s procedural language support (PostgreSQL 521), are not made easier by the

use of a relational database and SQL. Tasks that involve complicated string process-

ing such as stemming, tagging, etc., while not impossible, are simply unsuited for a

language like SQL, which is primarily used for data access and manipulation, not it-

erative calculation and creation. Additionally, hierarchical data, including treebanks,

are not easily represented by the relational model and hence is not easy to examine

using SQL inside of an RDBMS (Davies Advantages 329).

7.2 Advantages
For searching and analyzing corpus statistics, relational databases as the basis

for storing and analyzing corpora have a number of advantages over plain text stor-

age formats such as XML and pre- or custom-made programs for analysis. A great

deal of general-purpose functionality is available in modern RDBMSes that can be

applied to many tasks in corpus linguistics. Aggregate functions and GROUP BY

make tasks such as frequency analysis which would normally require an in-depth

knowledge of programming and data structures extremely simple. Additionally,

PostgreSQL has extensive support for mathematical functions, logical operators and

string manipulation including full support for POSIX regular expressions (Post-

28

gresSQL). Since data storage and access is highly regular, relational databases, espe-

cially those with a modular table design, can be extremely fast for even complex que-

ries, when combined with indexes (which are not discussed in this paper) as used by

Davies’s Corpus del Español(Davies Advantages 332-333). Comparative statistical

analyses on texts can also be carried out based on arbitrary annotations such as genre,

time period, author and more, without significant extra work as might be required by

a programmer writing a general-purpose corpus analysis tool.

Additionally, the approach discussed in this paper has advantage even over

other relational database techniques in use as described in Davies’s “Relational N-

Gram Databases as a Basis for Unlimited Annotation on Large Corpora” and “The

advantage of using relational databases for large corpora: Speed, advanced que-

ries, and unlimited annotation”, since they allow for more finely-grained annota-

tion and analysis and embrace the relational model for storage of corpus data at

all levels.

7.3 Summary
The techniques in this paper can empower a languages researcher with the

ability to perform advanced searches and statistical analyses on large corpora, with-

out having to become a full-fledged programmer. While it cannot replace the need

for custom programming for all possible tasks, the RDBMS can greatly lessen the

burden on researchers in terms of both time and effort for many investigative tasks

that do not fit squarely with available software. Storing annotated corpus data in an

RDBMS also allows the researcher to avoid the “parse, process, repeat” trap—data is

29

instead parsed once and then stored in the database where it can be queried with new

questions in an efficient manner. This eliminates wasted resources and improves

program and programmer efficiency. The fixed structure of relational tables and the

SQL language allow a researcher, to a certain point, to focus on what questions to ask

and how to ask them, rather than how to parse, process, store and retrieve the an-

swer. In turn, this can encourage further investigation and open-ended questions;

expanding the possibility for discovery.

30

Works Cited
Davies, Mark. “The advantage of using relational databases for large corpora:

Speed, advanced queries, and unlimited annotation.” International Journal

of Corpus Linguistics 10.3 (2005).

---. Relational N-Gram Databases as a Basis for Unlimited Annotation on Large Corpora.

< citeseer.ist.psu.edu/560613.html>

Hammond, Michael. Programming for Linguists: Perl for Language Researchers. Mal-

den: Blackwell, 2003.

Kennedey, Graeme. An Introduction to Corpus Linguistics. New York: Longman,

1998.

Lawler, John, and Helen Dry. The Nature of Linguistic Data: Using Databases. 1999. 2

June 2006.

<http://www.sil.org/computing/routledge/simons/databases.html>

Mason, Oliver. Programming for Corpus Linguistics: How to Do Text Analysis with

Java. Eds. Tony McEnery and Andrew Wilson. Edinburgh Textbooks in

Empirical Linguistics. Edinburgh: Edinburgh UP, 2000.

McEnery, Tony, and Andrew Wilson. Corpus Linguistics: An Introduction. 2nd ed.

Edinburgh Textbooks in Empirical Linguistics. Edinburgh: Edinburgh UP,

2001.

31

Nerbonne, John, ed. Linguistic Databases. Stanford: CSLI, 1998.

Oakes, Michael. Statistics for Corpus Linguistics. Edinburgh Textbooks in Empirical

Linguistics. Edinburgh: Edinburgh UP, 1998.

The PostgreSQL Global Development Group. PostgreSQL 8.1.0 Documentation. 27

Feb 2006 <http://www.postgresql.org/files/documentation/pdf/8.1/

postgresql-8.1-US.pdf>

Samson, Geoffrey. The SUSANNE Corpus: Documentation. Release 5. Aug 2000.

University of Sussex, Brighton. 4 May 2006

<http://www.grsampson.net/Resources.html>.

The SUSANNE Corpus. Release 5. Aug 2000. University of Sussex, Brighton. 4 May

2006 <http://www.grsampson.net/Resources.html>.

32

http://www.grsampson.net/Resources.html
http://www.grsampson.net/Resources.html
http://www.grsampson.net/Resources.html
http://www.grsampson.net/Resources.html

